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FOREWORD

This report was prepared by Research Center, Paoli, Pennsylvania, on

Air Force contract AF33(616)6355, under Task Nr 70949 of Project Nr 7062,

"Magnetic Logical Transducers. " The work was administered under the direction

of Electronic Technology Laboratory, Aeronautical Systems Division, Wright-

Patterson Air Force Base, Ohio. Mr. Eugene C. Maupin was task engineer

for the laboratory.

The studies presented began in June 1959 and were concluded in May 1961.

Although the studies were a group effort the chief contributors were 0. Stran,

J. Celia, and S. Einhorn.

This report concludes the work on contract AF 33(616)6355.
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ABSTRACT

A method is presented for the logical design of single-stage, combinatorial

switching circuits of n-variables. This method is applicable to circuits composed

of threshold devices, such as magnetic cores, transistors with Kirchoff adder

inputs, parametrons, etc. A study of the constraints imposed by the form of the

input portions of the threshold devices leads to the definition of certain classes

of functions which are physically realizable in a single device. By the use of

this method, arbitrary switching functions of as many as seven variables have

been easily designed by hand computations.

An algorithm for mechanizing Boolean switching functions, by means of a

net of magnetic toroidal cores, is described. The algorithm is referred to as

Simplex which, in this application, is programmed for a digital computer.

Computer-derived solutious specify the wiring configuration for a core or net

of cores yielding a device for performing combinatorial logic. Switching functions

are realizable in essentially one clock time. The logical designer may synthesize

a function directly from the truth table without proceeding in the customary

manner of expressing the function of Boolean canonical form and then attempting

to minimize with respect to hardware or other criteria by means of algebraic

manipulation or some mapping or charting technique.

An updated bibliography is included.

ASD TR 61-228 iii



PUBLICATION REVIEW

The publication of this report does not constitute approval by the Air Force
of the findings or conclusions contained herein. It is published only for the

exchange and stimulation of ideas.

FOR THE COMMANDER:

T GaSignature
.'OActing fBioni.. :. Unpyatar Branch Title

Electronic Technology Laboratory Laboratory

ASD TR 61-228 iv



TABLE OF CONTENTS

Page

SECTION I - ARBITRARY BOOLEAN FUNCTIONS ON N-VARIABLES
REALIZABLE IN TERMS OF THRESHOLD DEVICES

Introduction 1
Threshold Device Logical Element 3
Symmetry Operations 5
Function Transformation 9
Consistent Functions 13
Non-Consistent Functions 22
The Partitioning of Functions 23
Classification of Realizable Functions 27

SECTION I1 - THE USE OF THE SIMPLEX ALGORITHM IN THE
MECHANIZATION OF BOOLEAN SWITCHING
FUNCTIONS BY MEANS OF MAGNETIC CORES

Introduction 35
Notation 36
The Voting Function 37
The Simplex Algorithm 40
Explanation of Simplex 44
Simplex Modifications 56
Variable Suppression 58
Tableau Structure 62
Computational Procedure 69
Don't Care Condition 76

SECTION III - CONCLUSIONS 77

SECTION IV - RECOMMENDATIONS

Theoretical Studies 79
Simplex 79

BIBLIOGRAPHY 81

GLOSSARY 91

ASD TR 61-228 v



LIST OF ILLUSTRATIONS

Page

FIGURE la Non Realizable Functions 12

lb Partitioned Functions 12

FIGURE 2 A Portion of a Truth Table for N-Variables 15

FIGURE 3 Function Profiles 17

FIGURE 4 Sum of Minimal Profiles 19
FIGURE 5 .A Consistent Three-Variable Function and Solution 20

FIGURE 6 Consistent Minimal Profiles 20

FIGURE 7 Circle of Compatibility 21

FIGURE 8 Hypothetical EXCLUSIVE-OR Profile 22

FIGURE 9a Profile Shift Criterion for Realizability 28
9b Profile Shift Criterion for Realizability 29

FIGURE 10 Mirror Symbol Notation for Core Winding 37
FIGURE 11 Truth Table for Voting Function where p = 2

and n = 3 38

FIGURE 12 Core and Wiring Configuration for Voting Function
where p = 2 and n = 3 38

FIGURE 13 Truth Table for f = 01011101 40

FIGURE 14 Two-Core Mechanization of h = 011000010 43

FIGURE 15 Convex Polygon of Equations (21) 44
FIGURE 16 Corner Points of the Convex Polygon of

Equations (22) 46

FIGURE 17 Truth Table for f and the Sub Functions 59

FIGURE 18 Cores and Winding Arrangement for Mechanizing f 61

LIST OF TABLES

TABLE I Consistent Solutions of Two Variable Functions 16

TABLE H Partitioning of a Five Variable Function 25
TABLE III Primitive Solutions of Consistent Four-Variable

Functions 31

TABLE IV Primitive Functions of up to Five Variables 33

ASD TR 61-228 vi



SECTION I

ARBITRARY BOOLEAN FUNCTIONS ON N-VARIABLES REALIZABLE
IN TERMS OF THRESHOLD DEVICES

INTRODUCTION

It is well known that there are 2 possible switching functions of n-variables,

where each variable can take only the values "1" or "0." Each truth function has

2n states. For the purpose of designing arbitrary functions, switching circuits

for only a small class of these functions need to be catalogued, since it can be

shown that this class of circuits, under the symmetry operations of permutations

and complementations of the input variables, maps the entire set.

Aiken5 1 lists all vacuum tube switching circuits for four variables in a table

of 402 entries. Two other tables are given which show the transformation of the

function under the group of symmetry operations on the input variables, but even

for four variables, the process of transforming and classifying an arbitrary function

is extremely tedious, while five variables require a catalog of over one million

switching circuits.

The above classification is without regard to the properties of the physical

circuit which is used to embody the function. Thus, the same "primitive" set of

functions is designed whether the circuit elements are vacuum tubes, magnetic

cores, or relays, etc. If the circuit element is a threshold device such as a

magnetic core, then certain constraints are introduced into the problem. These

constraints offer a different class of functions, those which can be embodied in a

Manuscript released by the authors (May 25, 1961) for publication as an ASD
Technical Report.
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single input-composite of a threshold device. Such functions will be called con-

sistent with respect to a threshold device. If only the consistent switching

circuits need to be designed and allowing symmetry operations, a table of onl,

14 entries is required for all four variable functions, and probably no more than

65 for all five variable functions.

The design of an arbitrary n-variable function, using threshold devices is

accomplished in the following manner: a) The truth function is first partitioned so

as to separate the "one" bits into a set of functions, each of which is independently

consistent. b) The input composites for each of these functions is designed, per-

haps by referring to a table of consistent switching circuits. c) Since the parti-

tioning of the function places each of its "ones" into one, and only one, sub-set,

the output of the switching circuits need only to be ORed together to embody the

entire function.

It is the purpose of this report to demonstrate a means of pay .itioning and

designing arbitrary n-variable Boolean functions. Although most of the reported

work is with reference to magnetic cores, it is presented in terms of the generalized

concept of a threshold switching device. For this reason and because they are ade-

56
quately treated elsewhere, the physical details of magnetic core switching is

omitted here.

This report also covers a computer technique for mechanizing any arbitrary

Boolean function with toroidal cores. In other words, the computer-derived

solution will indicate the wiring configuration for a core or net of cores yielding

a device for performing combinational logic. Switching functions of n-variables

are realizable in one clock time.
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The technique is a linear programming technique referred to as the Simplex

algorithm. Of extreme importance is the fact that the logical designer may syn-

thesize a function directly from the truth table without proceeding in the customary

manner of expressing the function in Boolean canonical form and then attempting

to minimize the hardware by algebraic manipulation or some other charting or

mapping technique.

THRESHOLD DEVICE LOGICAL ELEMENT

A threshold device can be brought to either of two distinct states depending

upon the magnitude of some physical quantity at its input. Although the threshold

of a given device has a distinct magnitude (i. e. in a magnetic core the applied mag-

netizing force, Hi, must exceed the coercive force, Hc, in order to switch) it is

preferable to specify a range. That is if the state is not to change, the strength

of the input must be less than a specified quantity; if it is to change, the strength

of the input must be greater than another quantity. To use again the example of a

magnetic core, if the core is not to switch from negative remanence, the applied

magnetizing force H. 1 0; or if it is to switch Hi >H 0 , where H °  H and depends

upon the desired speed of switching. In units of H : H. 0 implies a "0, " H. > 10 1 1

implies a "1, " where " 0" and " 1 " denote respectively the negative and positive

remanent states of the core and it is assumed that the core always starts from

negative remanence.

The threshold device may be considered to be composed of two separate

portions, an input circuit which comprises a means of weighting and combining

the input variables, and an output stage which indicates by a definite change in
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state whether or not the combined value of the weighted variables exceeds the

threshold. Following Karnaugh 5 6 the mathematical description of the input

circuit is called the input composite. The input variables are denoted by

x 1 x 2 ... xn and can take only the values 0 or 1. All variables operate simul-

taneously in the input composite. The term x is reserved for a unit pulse,

which together with its weighting factor, is called the bias.

The effects of the inputs are added algebraically to obtain the net effect

on the output stage of the threshold device, and the input composite may, there-

fore, be represented in the following form:

M = qoN ox o + qIN1x + .... + qnNnxn (1)

Here qi= l -and Ni is a positive integer or zero. In terms of magnetic cores,

qi represents the polarity, Ni the number of turns of the winding, and M the

net applied magnetomotive force where x. represents a constant current pulse.

Now, since the value of M depends on the manner in which the variables

x. are taken as 0 and 1, we define a new quantity in terms of a column matrix1

whi, , will be called the solution vector, S. the terms of which are called the

input values.

qoNo

qlN1

S-

qnN

The M above is one term of a vector which is found by multiplying the

solution vector by the truth table for n-variables, treated as a matrix T. The

vector M will be called the input composite vector.
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T S = M

x xx 2 x 3 x n

1 0 0 0 .... N qq
1 1 0 0 .... qo N  q N .
1 0 1 0.... qIN 0 0 1

1 11 N0 .... q2N q0N0 + + q2N2
1 0 0 1 .... 0.. 0- qN0 qN1  q 2N 2

q0N 0 + N3N3

q 0 N 0 ... qo 1 qNl1 + q 2N 2 + q 3 N3 + ... + qn N n

The logic function F is evaluated by applying the threshold condition to M.

SYMMETRY OPERATIONS

The input circuit of a threshold device is specified by its solution vector.

Since it is a physical structure, it is invariant to complementations of and

permutations among the input variables. It is easily shown that the effect of the

symmetry operations is to permute the rows of the truth table. Consequently,

the terms of the input composite vector are likewise permuted without changing
n n

their values. One can, thus, postulate a 2 x 2 permutation-matrix P

which transforms a given M or its corresponding logic function, F, to another F'

having the same primitive solution, or switching circuit. Now, since it is desir-

ible to avoid the use of complement drivers, and the necessity for interchanging

leads, we transform the solution matrix, S, by means of a matrix, C, which is

defined as follows:
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T S = M (2)

T C • S = M' = P • T • S = P • M (3)

T. C = P T (4)

pre-multiplying both sides by Tt

T t  T. C = T P. T (5)
-t -- t - -

It can be shown by partitioning T and applying induction that Tt • T is non-

singular and thus has an inverse, (Tt • T) for any number of variables, n.

C = (Tt  T) - 1 Tt. P. T (6)

Only certain P-matrices are allowed because, although the transformation,

MI = P • M, is not unique, not all of the possible P-matrices will lead to a

product, T t  P • T, which is non-singular. The properties of the allowed
:t -

P-matrix have not been fully investigated as yet. In any case, we are now in

a position to describe C-matrices which will perform the symmetry operations,

on both the solution S and the truth matrix T, by (4) above. An example will,

perhaps, best bring out the qualities of the C-matrix. Given a Boolean function

of 3 variables, F = 10101100, (the least significant bit is underlined), the

permutation matrix, P. below transforms it to F' = 00100111 which has the

same switching circuit and which is listed in a table of basic switching circuits

such as that of Aiken.
5 1

F' = P F

1 ooooooo/0 0
1 0010000 1ii 0000000100
0 01000000 (7)
0 00100000 10

10 00001000 10
0 10000000 0
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The C matrix if formed by the use of formula (6)

C = (T t T) 1 . (Tt p .T)

For n = 3, the product T t • T and its inverse are:

8 442 , 4 2 -1-
Tt.T _ 4242[ (Tt. f-1 1 2

[4 2 24 0 0 2

Then T t P T

00000001 1000
1 0 001 0 000 1 10 0

1 1 1 111 0 00 00 1 00 1 0 10 ~84 4 4
101010 11 01000000 111 = 422 (8)

0 0f110011 00000010 10011 4202

L 0 0 0 0 1 1iii 00100000 110 [4022_
0 00 0 1 000 10 11

10000000 iii1

(T . T) -  (Tt . _P ) = C

2-1- - 4
2 0 0 422 0 0 -

-1 0 2 0 ' 42 0 - 0 0 -1 0
4 2 0 4O2 -1 o

Since post-multiplying T by C is the same as pre-multiplying it by P, let

us form the product T • C = T' and examine the resulting transformation of

the truth matrix.
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ST'

Xo X0 x x2 x 3

1 0 00 1 1 111100o i111
1 010 1 1 1 1 0

F 0 1 0 1 1 1 1 1 0 1
1 1 1 0 0 0 0 - 1 1 0 0 ( 0100 00 -m(10)1 0 0 I 0-I1 1 0 1 1
1 1 0 1 0-1 0 0 1 0 1 0
1 0 1 1 1 0 0 1
1 1 1 1 1i 0 0 0

Comparing T and T', we see that the effect of the matrix C has been to inter-

change columns x and x3 and replace the variables by their complements xI',!1

x2 ', x3 1. Indeed, C is the product of a permutation matrix r and a complemen-

tation matrix K.

IT K = _

1 0 00 [ 11 1 1 1 1
00 0 1. 0-10 0 0 0 -1
00 1 0 00 - 1 = 0 -i (i)

100 0 0 0 - - 1 0

Thus, to complement any variable x. without recourse to complement drivers,
1

it is replaced by (x - xi), this corresponds to Karnaugh's theorem. 56

All possible matrices T and K for n-variables, together with the unit matrix

I, form a group which is isomorphic with the group of isometries of an n-dimensional

hypercube. For n = 3, the group contains 48 members, i.e., six permutations,

and eight complementations.

We have, thus, shown that if a permutation matrix P can be found which

transforms an arbitrary function to another having a known solution (or switching

circuit) and if P has the property such that T • P • T is non-singular, then a trans-

formation C can be found which will convert the known solution to the desired one.
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FUNCTION TRANSFORMATION

A function will be called in basic form when it has been transformed by a

set of symmetry operations to another function having the same physical

switching circuit, but such that all the true bits have been moved as closely as

possible to the least significant bit end of the function. The required set of

symmetry operations can be selected in the following manner.

Consider a truth function on n-variables. The nth variable is false for the

first half and true for the second half. Count the number of true states of the

function in the second half of the function and subtract from the number of true

bits in the first half of the function. Call this number A . If A < 0, there are
n n

more true states in the second half of the function than in the first half. Thus,

complementing the variable X is one of the required symmetry operations. An

set of numbers Ai, 1 < i < n, is found by subtracting the number of states of

the function which are true when the variable, X. is true from the number of1

states which are true when the variable is false. With this set of numbers, it

is possible to describe the required set of symmetry operation.

Consider now a function in basic form which has k true states followed by

(m - k) false states where m = 2 n . The following statements concerning the A

and solution vectors can be inferred from the form of the function. Proofs are

omitted here.

1) Parity is conserved for all k among k and A.. This is also
true for any function. 1
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2) The A. can have the following values only:

0 <A, :g I

0 < A2 <2

0 A3  4

0 < A4 <8

0 < A < 2 n-l
n

3) Aj_ 1 < Aj

4) All k true out of m functions with no gaps are realizable.

5) The minimal solution vector will have the following form:

qo= + 1

qi = -1 for 1 ! i <n

NI N 2 < . .. <N < N1 2 n o

6) The statements are equivalent that the given function is in basic
form when a) the Ai are in monotonically increasing order or b)
the solution if it exists is as defined in 5 above.

We shall now state by analogy with the function studied that any arbitrary

function is in basic form when its A. are all positive and in monotonically in-1

creasing order as i increases. The set of symmetry operations required to

transform the arbitrary function to basic form is identical with the operations

required to transform the set A. to basic form. Since complementations and
1

permutations do not in general commute, all variables with negative A. are

first complemented and then the indicated permutations are performed.
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With some practice, the transformation of the functions for any symmetry

operation becomes obvious. For example, interchanging x 1 and x 2 permutes

the terms of the pairs: 1, 2; 5,6; 9, 10; 13,14; etc. of the truth table. Com-

plementing x1 permutes the terms of the pairs: 0, 1; 2, 3; 4,5; etc.

The C matrix required to transform the solution in basic form, S', to the

required solution, S, is found as follows. If A is the vector for the given function

and A is the vector for the same function in basic form one can write a matrix

D such that

D" A' = A

Since the solution has the order r.+ 1, the D matrix is converted to the C

matrix by bordering with a row and a column. For example:

Example I

F = 00 1 0 1 0 1 ; A1 = -3 A = 1 A = 1

F' = 00000111; A'1 = 1 A'1 = 1 A'1  = 3

D A =

1 01 10 o0 [3 1

r 0
1-0 0 1

10 0 0 -1
0 001 0
0 1 0 0i

To perform complementation, every column which contains a negative
entry must have a one in the added row.
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S = C S1
01 0 0 -1 2
2 = 0 0 -1 1

00 1 0 1

0 1 0 0

It is apparently true that the set, Ai, uniquely specifies the function if it is

realizable in a single input composite, and it is obvious from the way they are

defined that the absolute values of the members of the set for a given function

are invariant to symmetry operations on the function, although their order may

be interchanged. If the function is not realizable in a single input composite,

the set, A, does not uniquely specify it, for example see figure la.

A B
A B FA + A B + B

1 1 1 0 1 0 0
1 1 1 0 1 0 0
1 1 1 0 1 0 0
1 1 1 0 1 0 0

1 0 1 0 0 0 0
0 1 0' 0 0 1 0
0 1 0 0 0 0 1
1 0 0 1 0 0 0

1 1 1 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
AA - A +A =A A +A +A =

=A B-FA -=GA -A -FB -=GB -HB -B

21 Fl+ Ii 1 11 11.
3 3 4 .3 + + _ I

Figure la. Figure lb.
Non Realizable Functions Partitioned Functions
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The non-realizable functions A and B in figure la have the same set, 6i

but neither can be transformed into the other by any set of symmetry operations,

showing that the Ai does not specify uniquely a non-realizable function. Partitioning

the functions A and B in figure lb it is seen that summing over the like terms of

D vectors of the realizable functions making up the partitions produces the A

vector of the non-realizable function.

Given a realizable function, if A a = Ab permuting the variables Xa

will cause certain true states of the function to commute without changing the

function, since it implies that qaNa = qbN b. If the function is not realizable,

however, permuting the inputs Xa and Xb may change the function even if Aa = Ab.

Thus, if the function is not realizable, there is no guarantee that ordering its

A i monotonically will cause the true states to be clustered most densely. Never-

theless, the function will be considered in basic form when its set of Ai is

monotonically ordered w. r. t. increasing i.

CONSISTENT FUNCTIONS

If we examine a truth table for n-variables, we see that each span of four

rows repeats the truth values for the variables x and x The variable x3

becomes true in the second span and remains true for the entire span, likewise

with x4 , in the third span. In fact, each variable, x i , 3 i : n, must be

constant in any arbitrary span of four xows. Thus, any variations in the values

of the terms of the input composite vector within any span of four terms must be

due to the variables x I and x2 . Within any span, the presence of true variables
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whose indices are 3 or greater only affect the net bias and establish an average

level for that span as can be seen in figure 2. Consequently, it is il 2tructive

to study the properties of the set of functions of two variables.

Of the 16 functions of two variables, 14 of them are consistent as defined in

the introduction. With a little reflection, it is possible to write unique, minimal

solutions for each of them. These functions are shown in Table I, where the

decimal heading indicates the function, i.e. one is 0001, five is 0101, etc. Six

and nine, the two alternating symmetric functions (EXCLUSIVE OR and its

inverse), cannot be embodied in a single input composite and are, therefore,

inconsistent. It is easy to see that this is true by referring to figure 2. That

is, for function "six, " if both qIN1 + q0 N 1, and q N + q2 N 2 1 where

qoN 0 0. then surely qoNo + q1 1+ q 2 N2 Z 1, and similarly for "nine. "

As an example of the manner in which solutions of 'igher order functions

can be built up from the two-variable solutions, compare the solution for function

"seven" with the solution for function "one. " We see that the two are identical

if the x input value of the former is reduced by one. If we take the three-variable0

function f3 = 0001, 0111, the first span can be represented by function "seven"

and the second by function "one. " Referring to figure 2, in the second span,

the net bias term, which is constant throughout the span is q N + q N If
0 0 3 3

we, therefore, make the input value of x 3 , q 3 N3 -1, then the solution for the

first span fits the second span and the input composite is M = 2x - lx1 - lx2 - lx3 .

Plotting the successive values of M (the terms of the input composite vector) we

get the input composite profile which aids in visualizing the described process.

(See figure 3) Thus, the profiles of the minimal solutions of the functions "seven"
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xo x 1 x 2 x 3 x 4 .... Xn M

1 0 0 00 0.... qoNo(= Mo)

Span 1 1 1 0 0 0 .... 0 q0 N0  +qINI

1 0 1 0 0 .... 0 qoN +q2N2

1 1 1 0 0 .... 0 q0N0 +q 1 N 1 +q2 N2

1 0 0 1 0 .... 0 (qoNo+q 3 N 3 )

1 1 0 1 0 .... 0 (qoNo+q 3 N 3 )+q 1 NI
Span 2 1 0 1 1 0 . . .. 0 (qoNo+q3N3) +q2N2

1 1 1 1 0 .... 0 (qUNo+q 3 N 3 )+q1 N1 +q 2 N 2

1 0 0 0 1 .... 0 (q 0 N 0 +q 4 N 4 )

Span 1 1 0 0 1 .... 0 (qoNo+q4 N4)+q1N

1 0 1 0 1 .... 0 (qNo+q4N4) +q2 N2
i i i 0 .... U(q oN o+ q 4N 4)+ l l+ q 2 N

....................................

1 0 0 1 1 .... 1 (qN+qN+qN .... q3N3)

( q0 0 + qn Nn + n - q N3 )N 3

S1 1 0 1 1 .... I (qoNo+qnNn+q Nn l q 3N31)+q 3 N 1
1 0 1 1 1 .... 1 (qoNo+qnNn+qnNn ..... q 3 N 3 ) +q2N2

1 1 1 1 1 .... I (qoNo+qN+qNn .... q3N3)+qN+q2N 2

FIGURE 2 - A Portion of a Truth Table for

N-Variables
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No. 0 1 2 3 4 5 7 8 10 11 12 13 14 15

0 1 0 1 0 1 1 0 0 1 0 1 0 1

0 0 1 1 0 0 1 0 1 1 0 0 1 1

Fn.
0 0 0 0 1 1 1 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 2 -1 0 1 0 1 0 1

S. 0 -1 1 0 -1 -1 -1 1 1 1 0 -1 1 0

0 -1 -1 -1 1 0 -1 1 0 -1 1 1 1 0

TABLE I. Consistent Solutions of Two Variable Functions

and "one" are identical in form, but that the latter is shifted one unit to the left.

Likewise, the two spans of the function F are identical in form with the lower

span shifted one unit to the left with respect to the upper span, in accordance

with the input value of x3 . The function F is, therefore, consistent.

Functions such as "seven" and "one" will be called compatible with one

another if both functions can be derived from the same solution merely by a

change in the bias. It can be shown that other compatibilities exist if certain

equivalent modified two-variable solutions are admitted. The only allowed

modiications of the minimal solutions are in the terms N 1 and N 2 of the solution

vector. The signs of the terms, qi, are not allowed to change. The N i can only

be increased, since we start with a minimal solution and reducing the input

value of either variable to zero reduces the order of the solution. Likewise,

if the input-value of x. is zero, we cannot alter it without more information,
1
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7, Profile 1, Profile F, Profile

Functions 1 0 1
1 0 1
0 0 0

- 12 -101 1
0
0
0

-1 0 1 2

2 1 2
Solutions -1 - 1 -1

-1 -1 -1

-1

FIGURE 3 - Function Profiles

since the value of qi is not known. We now investigate whether a modified, or

non-minimal solution, which may represent a different function can be restored

to representing the original function merely by a change in bias.

If a modified two-variable solution is formed from a minimal two-variable

solution by increasing the input value N. of one of the two variables, it can be1

seen by the first span of figure 2 that the value of the input composite for either

pair of terms M 1 and M3 or M 2 and M 3 will be altered, without altering the

difference between them because the same amount is added to each. Thus, if

the truth values of either or both members of one pair of terms change, their

truth values can be restored by a compensating change in the bias. This compen-

sating change will not alter the truth values of the unaffected terms for the

following reasons: Consider first the terms M 1 and M 2 .

(a) If both terms are greater than one, and if the input value of x 1 or x 2
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is altered so as to cause either M 1 or M 2 to become zero or less (the qi of the

variable in question must be - 1), then in "restoring" by a bias change, which

must be in the positive direction, the previously unaffected term is made more

positive so its truth value is unchanged.

(b) If both terms were zero or less, by the same reasoning, the truth value

of the unaltered term is not affected by restoring.

(c) If one term is one or greater and the other is zero or less, the truth

values of terms M 1 and M 2 cannot be altered by altering N 1 or N 2 since the signs

q and q 2 are opposite. Note that if either N1 or N2 is zero, it cannot be altered

since we do not know the sign of its qi"

Now consider the term M , the truth value of which is most likely to change

with restoring by bias compensation since it depends only on N0:

(a) If M : 0 and the solution is to be altered so as to cause either M 1 or

M 2 to exceed the threshold, it can only be done if the appropriate input value was

initially positive. Restoring will, therefore, only make M more negative and

will not alter its truth value, fo"

(b) If M 0 and either M, or M is to be.made less than zero, it cannot be
0 2

done by the allowed alterations, since the appropriate qi must be initially positive.

(c) If M 0 1 the same reasoning shows that the only possible alteration in

the term M or M 2 is such as to cause its value to go from one or greater to zero

or less, changing its truth value from a "1" to a "0. " Therefore, restoring the

truth value of the term M or M 2 will not alter the truth value of M o -

Thus, it has been shown that a minimal two-variable solution which represents

one two-variable function can be altered so as to represent a different, though
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related, function by altering the input value N. of one or both of the variables,1

x 1 , x 2 , or the bias x and then "restored" to representing the original function

solely by a change in the bias input value q N . These related functions, sharing

a non-minimal solution are also compatible.

As an example, let us solve the three-variable function F = 00010101.

Dividing it into two four-bit spans, noting their minimal, two-variable solutions

from Table I, and generating their profiles, we have figure 4.

Span 1 2 non-minimal sum

1 1 1 1o 0 0 0
2 -Function 1 0 1 0

1 0 1 0

0 0 0 0

1 1 2 1
Solution - 1 -1 -2 -2

0 -1 -i -1

Profile

-1 0 1 -1 0 1 -1 0 1 2 -2- 01

FIGURE 4 - Sum of Minimal Profiles

It is readily seen that no possible alteration of the input values of the biases

of either two-variable solutions in figure 4 can make either function fit the other

function. Now, if we add like terms of the solution vectors, or add across the

two profiles, we obtain the non-minimal solution and profile shown in the third

column of figure 4, which still represents the upper span function. The fourth

column shows that by adding - 1 to the bias, the same solution and profile can
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also represent the second span of the function F. This indicates, as in the

previous example, that the input value of variable x 3 q3 N 3 = - 1 and the solution

for the function F is as shown in figure 5. If the two corresponding terms of two

minimal solutions have opposite signs, the order of the solution is reduced and

the sum cannot represent either. Such solutions are not compatible.

T S = M Profile F

1000 2 2 1
1100 -2 0 0
1010 1 1
1110 L 1 1 0
1001 1 1
1101 -1 0
1011 0 01111 -2 0

-2 -1 0 +1 +2

FIGURE 5 - A consistent Three-Variable Function
and Solution

1 0 1 0 1 0 1 1 0 0 1 0
1 0 1 1 0 1 0 1 0 0 1
0 1 0 0 1 1 1 0 10 0
0 1 1 0 1 0 0- 0 1T] [ 0 1]

A A' B B' C C' D D'

FIGURE 6 - Consistent Minimal Profiles

The fourteen consistent, two-variable functions may now be tabulated and

classified with respect to their compatibility with one another. A convenient

way to do so is on the basis of their profiles, figure 6.
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iA

B C

DV D

Cor B'

Figure 7 - CIRCLE OF COMPATIBILITY

EACH SOLUTION IS COMPATIBLE ONLY
WITH ITS NEAREST NEIGHBORS.

The function is written between the values M = 0 and M = 1. Where the

same profile can represent two functions by shifting, they are displayed accord-

ingly. The letters are arbitrarily assigned for convenient reference. The

compatibilities of the minimal functions are shown in figure 7. The empty set

is called "0," the filled set I and they are compatible with all other functions.
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NON-CONSISTENT FUNCTIONS

It will be recalled that the functions "six" and "nine" the EXCLUSIVE-OR

and its inverse are not consistent. A two-variable function can be thought of

as being composed of four functions of (n-2) = 0 variables, and the profile of a

zero-variable function is obviously a straight line at zero, or at one. Let us

construct a hypothetical profile for the function "six" by shifting the zero variable

profile to accommodate its four quarters, see figure 8.

First quarter I 0 - shift = +1

Second quarter 1 I
Third quarter 1I - shift = -1
Fourth quarter 10

Figure 8 - Hypothetical EXCLUSIVE-OR Profile

We see that to accommodate the second quarter it is required to shift the

(n-2)-variable profile by S - + 1 unit, and to accommodate the fourth quarter,

the profile must be shifted by S = - 1 unit. Thus, the absolute value of the

difference in shift between the quarters in the first half and the quarters in the
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second half, 6S = 2. Referring to figure 6, we see that for all two-variable

consistent minimal profiles, the difference in shift 6S = 0. Referring now to

the profiles in the first two colmns of figure 4, the first profile represents the

upper half and the second the lower half of the profile of the 3-variable function,

0 0 0 1 0 1 0 1. The shifts between the quarters for the profiles shown are

zero for the first half and - 1 for the second half, so that the difference in shifts

S = 1 0 -1 1= 1, this function is consistent, and can be realized in a single

input composite as shown in figure 5. It appears to be a general criterion that

if the absolute value of the difference of shift, 6 2, the function is not con-

sistent and requires more than one input composite for its realization. This

criterion will be discussed further under partitioning.

THE PARTITIONING OF FUNCTIONS

Having examined some of the properties of the minimal, consistent two-

variable solutions, we are now in a position to consider a method of partitioning

the true terms of an arbitrary n-variable truth function into a set of functions

each of which is consistent, in accordance with the design procedure laid out in

the introduction. It was shown in the discussion of consistent functions that any

term to term variations of the M vector within a span of four terms must be due

only to variables x 1 and x 2 . Thus, if the function is divided into spans of four

terms as in figure 2, the minimal two-variable solutions for each span considered

independently must be compatible with all others if the function is consistent.

Note that compatibility is not transitive, i. e. the fact that B is compatible with

A and A with C does not imply that B is compatible with C.
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It was conjectured, at first, that permuting every possible pair of variables

with the variable x 1 and x 2 successively, leading to n(n-1)/2 related functions,

(that is, related by having the same assumed physical embodiment, but altered

by symmetry operations), and checking each of these derived functions for

compatibility among its four bit spans would be a sufficient test for realizability.

This conjecture turns out to be false for more than five variables. Since the

condition is mathematically necessary, however, it can be used to delete incom-

patible bits from a non-realizable function. Although if the resulting partition

function has more than five variables, it may still not be realizable. This

process is called partitioning by the method of sieving, and a simple example

is given in Table II.

In the light of the proposed criterion for realizability, it is possible to

determine why the 2-variable sieving test breaks down. The criterion essentially

states that if the input value of at least one of the variables, xj, is not independent

of the rows of the truth table but requires in one portion qjl Njl and in another

portion qj 2 N j2 and that if the absolute value of the difference between the input

values, 6S = I q jN j " qj2Nj2 : 2, the function is not realizable. The

difference, 6S P is determined by the shift required to accommodate a suitably
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TABLE II

PARTITIONING OF A FIVE VARIABLE FUNCTION

Consistent Functions First Partition Perm.
State F A B C D E F x

V /,/ V 1/ 0
0 1 0 0 1 0 0 0 10111001 x4
1 0 0 0 0 0 0 10000 FirstSieve
2 0 0 0 0 14-1 000-0 5
3 1 1 0 0 1000---1-10 x1
4 1 0 0 1 I BCACCAC Solutions x 1

5 1 1 0 B' C' 2
6 0 0 0 x
7 1 1 0

8 0 0 0 The checked columns have compatible
9 0 0 0 solutions. The true bits of the EXCLU-

10 0 0 0 SIVE-OR functions in columns 2 and 5
11 0 0 0 are treated as separate functions. The
12 1 0 1 lower bit of column 5, representing a C'
13 1 1 0 solution is stricken out.
14 1 0 1 Perm.

15 1 1 0 0000 1001 x
16 0 0 0 0 1010 1011 0

17 1 0 0 1 0 0 00 0 0 0 0 Second Sieve 3

18 0 0 0 1000 1011 x 4

19 0 0 0 D' OB 0 B OD'B Solutions
20 0 0 0 1

21 1 1 0 0 x2
22 1 0 0 1 x
23 1 1 0 0 5

24 0 0 0 All columns compatible, all bits pass
25 1 0 1 second sieve. Perm.
26 1 0 1 4r
27 1 0 1 0000 -0O0&-

28 0 0 0 0010 1010 x
29 0 0 0 0000000 1
30 0 0 0 0 0 0 0 1010 1011 x2
31 1 1 0 0 0 0 0 C' Solutions x 3

C'OD'0 D' 0D'C' x 4

x 5

Striking out the bits in the first row
converts the solutions to those shown
below the line. All of which are com-
patible.
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TABLE II
(Cont'd)

PARTITIONING OF A FIVE VARIABLE FUNCTION

Taking the columns of the third sieve in order from the right, the first partition

results in the function marked A, which is consistent. Its solution is:

-3
3

S = 1
-- 2

-1

The successive partitionings proceed in a similar manner.

chosen common profile to different portions of the function.

There are at least three ways in which 6 S -' 2 can occur:

(1) q jl =  1, q j2 = + 1

(2) q j N.l < qkNk < qj j2 for qjl = q = 1

(3) qk Nk 2 q j N.l > qj 2 (Nj2 + 2) t qtNI or

qqk Nk < qj N. qj2 (N j2- 2) q CN t

for qk = q j1 = qj2 = q' = + 1 and such that no other input has a value intermediate

between those of xk and x .

Condition (1) is equivalent to complementing one of the inputs of a minimal

compatible, 2-variable function. For example, complementing the variable XI

in a C profile produces the B profile. This change is detected in at least one of

the sieves.
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Condition (2) in the sieves is equivalent to a permutation of the variables

X. and X k . Thus, permuting the variables X 1 and X2 in A-C profile gives rise

to a C-D profile and since compatibility is not transitive, condition (2) is also

detected in the sieving process.

Condition (3) cannot be detected in a sieve since only relationships such as

qk N k > q. > q. NN t would result, and would indicate

an apparent compatibility.

The two variable sieving method is equivalent to the two monotonicity test

for realizability7 7 ' . Similar tests could be described which would test higher

ordered monotonicities for functions of more than five variables but, since it

is known that complete monotonicity is not sufficient for realizability and because

the labor involved becomes great, it is not considered worthwhile.

A partitioning method can be based on the profile shift criterion mentioned

above by taking successively higher ordered profiles as shown in figures 9a and

9b. This method partitioned Moore's function into two realizable functions,

the one having only a single true state. The process also resulted in solutions

for each of the functions.

CLASSIFICATION OF REALIZABLE FUNCTIONS

All of the four-variable single-input-composite switching circuits or solutions

are tabulated in Table Im along with the function in basic form which it represents.

Moore's function is a completely monotonic function of 12 variables which
is not realizable in a single threshold device.
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The symbol (k) stands for k true out of m = 2n states of the truth table. The

solutions were extracted from a table of all four variable, combinational, linear-

input switching circuits derived by R. C. Minnick by means of the simplex

algorithm of linear programming using the Burroughs 220 computer.

Admitting the operation of inversion along with the symmetry operations, the

fourteen functions tabulated suffice to map every realizable function. Inversion

is equivalent to subtracting the given function from one which is true for every

state. Whenever the number of true states of the realizable function is greater

n-1than 2 , it is advantageous to invert. The solution is inverted by a vector

subtraction, for example:

1 - F F1

2,-2 (12)
0 1  -3 i3

-2 i 2

0 1

Using the table for four variable functions, it is possible to build up a table

for five variables by attaching one function to the end of another. A (32) five

variable basic function is formed by attaching a (11) function to the end of a (156)

function. There are two choices of ( functions and we must take the one

having a true state in its lower half. That is, the one on the right of the (16)

column of Table IV. Remembering that the input value of the new variable, X5,

is negative and that N 5 ' N 4 if the 5-variable function is to be in basic form,

the first half of the lower 4-variable function must be contained in the second

half of the upper function. Thus, since there are no true states in the lower half
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1 1 2 1 2 3 2 2 3, 3 4 1 3 2
-1 0 -1 0 -1 - -1 0 -1 -1 -1 0 -1 0

Solution -1 -I -1 0 -1 - -1 -1 -1 -l -2 0 -1 -1
-1 -1 -2 -1 -1 -2 -1 -1 -2 -1 -2 0 -1 -1
-1 -1 -2 -1 -2 -3 -1 -2 -2 -3 -3 -1 -2 -1

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 1 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 0
o 0 c0 0 0 0 0 0 0 0 0 1 0 0

Function 0 0 0 0 0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0o 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE III - Primitive Solutions of Consistent,
Four-Variable Functions
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5

of the (16) function on the left hand, no true states can be added. Furthermore,

since the same 4-variable profile must generate both halves of the 5-variable

function, only compatible changes are allowed. These criteria are sufficient for

all five variable basic realizable functions, but not for six variables, and in

general, it is not known how to generate every realizable function for more than

six variables. Table IV lists all realizable functions of 5-variables in basic form

along with their A and solution vectors. Note that all realizable functions of

fewer than 5 variables are automatically included.

The A vector indicates the number of essential variables in the function;

if any of the terms A. = k where k is the number of true states of the function,1

it means that the corresponding variables X. in the basic solution are present1

only to suppress true states. Thus, they are given input weights, qi N. = - No.

A function of five or fewer essential variables can be tested for realizability

by reference to the table. First, determine the A vector for the given function.

If the function has five or fewer essential variables, the table can be used.

Look for a matching set of A. in the table, ignoring negative signs and the
1

order of the terms, under the columns headed by (32). If k > 2 look in the
k* * n

columns headed (32), where k = (2 n - k) for the basic form of the inverted

junction. The solution vector of the basic function (if the given function is

realizable) is converted to the desired solution as in example 1. But, if the

function was inverted, the basic solution is first inverted and then each input is

complemented before deriving the D and C matrices.
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Finally, the number of entries in Tables III and IV can be reduced by applying

the concept of profile shifting. Suppose that the bias input value is not constant,

but a quantity that can be varied positively and negatively in integer steps. The

function that is generated will then depend upon the bias setting, and the number

of different functions which can be generated depends upon the extent and com-

plexity of the profile. It can be shown that by allowing the operation of profile

shifting, only two special, non-minimal designs are required for all realizable,

basic-form functions of three variables, three designs for four variables, and

eight for five variables.
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SECTION II

THE USE OF THE ,3IMPLEX ALGORITHM IN THE MECHANIZATION
OF BOOLEAN SWITCHING FUNCTIONS BY MEANS OF MAGNETIC CORES

INTRODUCTION

In recent years many magnetic devices have been introduced which are used

to mechanize switching functions. One class of devices which has received wide

attention is the multi-aperture, or multi-path, structures, such as the Trans-

1 9 42
fluxor, the MAD's, and the Laddic. Their common property, in addition to

using magnetic material with a rectangular hysteresis loop, is that some or all

of the logical functions are performed by controlling the actual switching path

through the structure. The philosophy is to achieve as much logic as possible

within the structure, thereby reducing component count and interwiring.

The question arises, however, as to whether the simple toroidal core has

been given sufficient consideration. A study of Karnaugh's paper, "Pulse

Switching Circuits Using Magnetic Core, "56 and an internal report by R. C. Minnick 6 5

revealed extremely interesting logical properties of the simple toroidal core

based on the exploitation of its magnetic threshold. For example, the logical

threshold function can be mechanized in a single core, including, of course, the

AND and the OR functions which are special cases of the threshold function. This

leads directly to the consideration as to how, if possible, does one synthesize

any arbitrary Boolean function with a single core or perhaps several cores.
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This section reports on a computer technique for mechanizing any arbitrary

Boolean function with toroidal cores. In other words, the computer-derived

solution will indicate the wiring configuration for a core or net of cores yielding

a device for performing combinational logic. Switching functions of n variables

are realizable in essentially one clock time.

The technique is a linear programming technique referred to as the Simplex

algorithm. Of extreme importance is the fact that the logical designer may

synthesize a function directly from the truth table without proceeding in the

customary manner of expressing the function in Boolean cannonical form and

then attempting to minimize the hardware by algebraic manipulation or some

other charting or mapping technique.

It will be interesting to note that this technique is not limited to magnetic

cores but should apply to any device with a physical threshold.

NOTATION

The schematic representation of magnetic circuits is facilitated by the use

of mirror symbols. In this paper cores (toroids) are represented by heavy

vertical line segments, wire leads by horizontal line segments, and windings by

450 mirror symbols at the intersections of the cores and leads, figure 10. The

sense of the magnetic field associated with a current in a given winding is ob-

tained by "reflecting" the current in the winding mirror symbol. For example,

if the core is initially in the reset, application of current 11 to winding N 1 is in

a direction to cause the core to set. If the core were initially set, the applica-

tion of 12 through N 2 would cause the core to reset. The magnetic logic in
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connection with this paper is performed with a two-phase clock. The core is

initially in the reset state. At phase one the core is set or not set in accordance

with the logical requirements. At phase two time the core is reset. Signals

induced by flux change are interpreted as logical ones.

SET

INI

N2

RESET

Figure 10 - Mirror Symbol Notation for Core Winding

THE VOTING FUNCTION

The voting function is a Boolean function which states that if P or more out

of n variables are present, then an output will result. For example, the truth

table for p± = 2 and n = 3 is shown in figure 11. This function may be mechanized

with a single core. It is assumed that a unit current pulse is available to

represent each variable plus its prime. Karnaugh's 5 6 rule for generating the

voting function is to connect (p - 1) of the primed variables in a direction to

reset the core and (n + 1 - V) unprimed variables in a direction to set the core.

One way to wire the core is shown in figure 12. The m. m. f. equation is

F = I2N2 + 13N3 - IN 1  (13)
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assuming that the magnetic threshold of the core is one ampere-turn and noting

that all quantities in the m. m. f. equation are integers it may be stated that if

F i 1 then i = 1

and F. 0 then f. = 0
1 1

where the index "i" denotes the row of truth table and F. and f. the corresponding1 1

values of the m. m. f. and Boolean function respectively. It is readily seen that

if N 1 = N2 = N3 = 1 and if the values ofthe variables are applied to (13) in

accordance with the truth table, the proper values of F. are attained to satisfy1

the voting function required.

Is Ii Ij

isO 0 0 0 0

I 0 0 I 0

2 0 I 0 0

3 0 I ! I

4 1 0 0 0

5 I 0 I I

6 I 1 0 I.

7 I I I

Figure 11 - Truth Table for Voting Function
where 4= 2 and n= 3

s OUTPUT z f

RESET

R

Figure 12 - Core and Wiring Configuration for Voting
Function where 4= 2 and n = 3
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It should be noted that a primed variable can be replaced by a unit current

bias pulse, always present at phase one time, and by the unprimed variable in

accordance with (14).

I' = I - I (14)n 0 n

Complementing is achieved since I = 1 when I = 0 and when I ' = 0, I = 1.n n n n

Equation (13) may be written as

F = -I ° N 1+ I N I2N 2 + I3 N3

where N has the same number of turns as N V

An extension to this type of switching function mechanization is to develop

a technique for synthesizing any arbitrary Boolean function in a similar manner.

It turns out that it is possible to mechanize many Boolean functions with a single

toroid appropriately wound. Unfortunately, not all functions can be realized

with a single core. For example, the "exclusive-OR" requires two cores. How-

ever, the method to be described will handle multicore solutions.

Consider the function 0 1 0 1 1 1 0 1 (1 denotes least significant bit). The

truth table representation is shown in figure 13. If the core is wound according

to (15), which means I and 12

F = 2 12 - 21 - 13 (15)

applied to two turns and one turn respectively in a direction to set the core and

II and 13 applied to two turns and one turn respectively in a direction to reset

core, then the function is mechanized in a single core. This solution may be

reached by intuition or by trial and error. When the number of variables
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increases, the need for an algorithm becomes apparent.

THE SIMPLEX ALGORITHM

A linear programming technique referred to as Simplex provides an algorithm

for determining the wiring configuration for mechanizing any arbitrary Boolean

function with a single core where possible and with a multiplicity of cores when

necessary. It is the aim of this p&per to provide an insight to the workings of

Simplex and its application to our problem, while at the same time avoiding the

many associated details in connection with computation and programming. Con-

sider the truth table of figure 13. An m. m.f. inequality may be written for each

row. A threshold value of one ampere-turn is assumed for core switching, and

in conditions where core switching is not desired the net m. m.f. is held less

than or equal to zero ampere-turns.

o I1I, , I,

i:0 I 0 0 0 1

I I 0 0 I 0

2 1 0 I 0 I

3 I 0 I I I

4 I I 0 0 I

5 I I 0 I 0

6 I I I 0 I
7 ' I I I I 0

Figure 13 - Truth Table for f u 01011101

-40-



IN
oN 0

IoNo + I1 N1  0

IN o +NI0N 1

IoN o + 1 1 N1 + I2N2

IoN o  + I3N3  1 (16)

I N+I1N + I3N3  0

IoN o  + I2N +N1

IN +IN 1  + I N +N0

The system of inequalities (16) is consistent (one or more solutions), and

the function may be mechanized by a single core. If the system of inequalities

(16) were inconsistent, then more than one core would be required.

If an arbitrary Boolean function is processed by Simplex, the results are

as follows:

1. If the system of inequalities is consistent, a set of values for N. will

be found which satisfy the inequalities. However, it is important to note that

a particular solution will be found which will minimize an arbitrarily specified

linear function referred to as the objective or cost function of the form

Z = K N1 + K2  N2 +... + Kn  Nn (17)

where K are constants. (In other words the Simplex algorithm furnishes a

method for solving a system of inequalities and at the same time provides a

minimization criterion, namely the total number of turns. )

2. If the system of inequalities is inconsistent, then the Simplex solution
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will indicate how the constraints must be modified and what portions of the desired

function will be mechanized in each of the multiplicity of cores.

Before proceeding with the explanation of the Simplex algorithm, examples

of solutions of two functions, a single core solution and two core solution, are

given. The solution to the function 01011101 is N = 2, N 1 = - 2, N 2 * 1, and

N 3 = - 1. This of course results in (15). Consider the function, h = 01100010.

The Simplex-derived solution is N1 = 1, N 2 = - 1, and d6 = K. Noting the

presence of d6 = K in the solution and temporarily ignoring it, the m. m. f.

equation may be written,

F = 11 - 12 (18)

A core wound in accordance with (18) yields the function f = 00100010. Note

that f differs from h by its absence of a "one" in the 6th position. This corres-

ponds to the subscript of d, a dummy variable, the role of which will be described

later.

A new function, g, is formed by observing the dummy variables remaining

in the solution and placing a "one" in the bit positions corresponding to the sub-

scripts of the dummy variables. In this example g = 01000000. This function is

now processed by Simplex, and the solution is N 0 1, N 1 - N 2 = 1, N 3  1.

The corresponding m. m. f. equation is

G = -Io - 11 + 12 + 13 (19)

Since no dummy variables remain in the solution to g, it is a one-core function.

In general g may not be a single-core function, and the procedure described above
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would be repeated until the final function processed contained no dummy variables.

In our example, two cores are required to mechanize h (refer to figure 14). Cores

F and G are wound according to (18) and (19) respectively. An output wire is

series connected to both cores. Either core F or G, or neither, will switch in

accordance with the input lines energized. Hence, the voltage induced in the

output line at phase two time represents the function h, or

hi = f' + gi (20).

OUTPUT: h

S S

10_

13

s s

RESET

R R

Figure 14 -Two-Core Mechanization
of h = 011000010
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EXPLANATION OF SIMPLEX

Consider the following system oi inequalities.

(1) a1 1 x + al2 x 2 b1

(2) a 2 1 x 1 + a 2 2 x2 2 b2

(21)
(3) a3 1 x 1 + a3 2 x2

(4) a 4 1x 1 + a 4 2 x2 2 b4

If each inequality of (21) is treated as an equation and is graphed, the set of lines

shown in figure 15 would result. Only the area included by the convex polygon abcd

contains values of x 1 and x 2 which are solutions to (21). A useful theorem enables

one readily to find a solution which will minimize an associated cost function.

0

d

X1

Figure 15 - Convex Polygon of Equations (21)
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57

Theorem I: A linear function defined over a convex polygon takes on its

maximum and minimum value at a corner point of the convex

polygon.

Hence, one simply tests the value of the cost function at each corner of the

.convex polygon to determine the values of x 1 and x 2 which satisfy the system of

inequalities and minimizes the cost function. As the number of variables and

equations increases, the geometrical picture becomes hopeless. It would amount

to finding corner points of convex hulls in hyperspace. Fortunately, the Simplex

algorithm need not be considered in the light of the above. The algorithm is

perhaps best explained by example accompanied by pertinent theorems and

definitions.

Consider the following system of inequalities and cost function.

(1) x 1  - 0

(2) x2 3> 0

(3) x I + 2x 2  8 (22)

(4) x I + x 2  5

(5) - x + 2x 6
1 2

Z = - 2x I - 3x 2

The convex polygon is.shown in figure 16. The value of the coordinate of the

corner point (14, 15) minimizes the cost function.

The Simplex algorithm is utilized to find what is referred to as a basic

feasible solution.

Definition I. A feasible solution is a solution which contains nonnegative x's.

-45-



Definition I. A basic feasible solution is a solution which contains at most

m positive x's where m is the number of constraints.

Since the solutions are restricted to basic feasible solutions, the first two in-

equalities of (22) need not be written. The last three inequalities of (22) are

converted to equations by the introduction of "slack" variables x3 x 4 and x 5 "

X2

(

Figure 16 - Corner Points of the Convex
Polygon of Equations (22)
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Xl+ 2x 2 +x 3 = 8

X + x2 + x4 = 5

(23)

X1+ 2x 2 + x 5 = 6

Z = -2x I - 3x2

Equations (23) are now said to be in "cannonical" form with respect to variables

x 3 , x 4 , and x 5 . Notice that the coefficient of x 3 is plus one and that it does not

appear in any other equation. This is true also for x4 and x 5 . The canonical

form in general is

X1 + a1, M+ 1 XM + + ... +an xn bI

x 2 + a2, m+ 1 Xm+ + .... + a2n xn =b2

(24)

Xn +an,m+l Xm+1 + ... +mn xn b

ZC x + .. +C x + constant
Z. = Cm+ 1 Xm+ 1 + + C nn

Theorem II: if a problem has an optimum feasible solution, then it also has

a basic feasible solution which is optimal.

Note that the canonical form of (23) enables one to obtain a basic, feasible

solution simply by setting x 1 and x 2 equal to zero. One solution, then, is x3 = 8,

x 4 = 5, x5 = 6, and the corresponding value of the cost function is Z = 0. The

introduction of slack variables provides an initial basic feasible solution not

necessarily optimum. By appropriate algebraic manipulation, (23) can be put into
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canonical form with respect to any set of three x's. These variables are referred

to as "basic variables" or as the "basis. " In this problem the total number of

solutions to be examined is the combination of five things, taken three at a time,

or ten solutions. For larger problems this trial and error procedure becomes

prohibitive. Fortunately, there is a systematic iterative procedure for finding,

in a relatively few number of steps, a solution which minimized the cost function.

Referring to the cost function of (23), if x 1 or x 2 were increased from zero,

then the value of Z would be reduced. This, of course, is because their co-

efficients, called the "relative cost factors, " are negative. First to be considered

is x 2 1 since it would appear that any change here would have the greater effect

on the value of Z. (However, it is not essential that x2 be given first considera-

tion. ) The question arises as to how large x 2 can be made without causing any

of the other x's to turn negative. Therefore, from (23) the following may be

written:

2x = 8 ; . x2 =4

x 2  = 5 ; 2  
= 5

2x = 6 ; 2  3

The minimum positive value of x 2 is selected; i. e. x2 = 3. If the value of

4 were selected, then x 5 would turn negative. If the value of 5 were selected,

then both x 3 and x 5 would turn negative. The value of x 2 = 3 makes x 5 = 0.

Hence, x 2 replaces x5 in the basis andthe equations (23) are now rearranged to

canonical form with respect to the basic variables x2, x3 o x4 .
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2x I -x 5 + x 3 =2

3x1 x5

2= 2 (25)

x + x5

2 2 2

7x 3x

2 2

The basic, feasible solution is x= 0, x2 =3, x3 =2, x4 =2, and x5 = 0

with the cost function decreasing to Z = - 9. By examining the relative cost

factors of (25), it can be seen that the value of the cost function can be decreased

by increasing x1 only. The positive value of the relative cost factor of x5 prohibits

increasing x 5 from zero since this would result in an increase for Z. Testing

again to find the new basis, it can be seen that x1 replaces x3 .

2x I =2; .x = 1

3x l 1 2 •X l 4

31  32 X1  -6

2

Notice that one value for x is - 6. This cannot be used since it would result

in an increase in the value of the cost function. Equations (25) are now put in

canonical form with respect to the basic variables x I , x2 , and x4 .
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x 3  x 5
2 "2-+ X1

3x 3  x 5  1 (26)
-4+-4+ x 4  -

x3 x5 7
-4 - +4 -+ x 2  2

Z x 5 7x3  25
4 4 2

71

The solution is x 1 = 2 , x3  0 x 4  2 and x = 0; the value of

25Z is - 2 . Repeating the process

x5
- = 1 "K 5  = -2

22

x5  I

-x 3 + 2x 4 + x1 = 2
3x 3 + 4x 4 + x5 x 2 (27)

x 3 - x 4 + x 2 = 3

Z x + x 4 - 13
2-3 4
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The solution is x 3 = 0, x 4 = 0, x 5 = 2, x 1 = 2, and x 2 = 3. The value that Z takes

is - 13. Note that now all of the relative cost factors are positive. Hence, neither

x 3 nor x 4 can be increased. This indicates that the above solution is one which

minimizes Z. This solution agrees with the solution obtained by the graphical

method. Note that the intermediate solutions are also corners of the convex

polygon of figure 16.

Since the Simplex solution yields only positive values for the unknowns, each

Nj is represented as the difference of two positive numbers (t. - C.) which would

correspond to clockwise and counter-clockwise windings, respectively. Hence,

the solution to function 01011101 would be of the form to = 2, C1 = 2, t 2 = 1, and

C 3 = 1. Preparing inequalities (16) for Simplex they would be written as

(t-C) 1

(to-C ° ) + (tl-C) 0

(to-C ° ) + (t 2 -C 2 ) 1

(to-C °) + (t l-C1  + (t2 -C 2 ) 1

(t o-C) + (t 3 -C) 1 (28)

(t 0 -C 0 ) + (tl-C1 ) + (t 3-C 3 0

(to-C 0 ) + (t 2 -C 2 ) + (t 3 -C 3 ) 1

(to-C o ) + (t1 -C 1 ) + (t 2 -C 2 ) + (t 3 -C 3 ) 0
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where the t. and C. are the unknowns. The I coefficients are dropped because

they have the value of unity.

Note that in addition to < signs appearing in (28) > also appear. In the

case of > constraints a slack variable is subtracted and a dummy variable is

added to the lefthand side of the inequality. Dummy variables are required to

provide the initial basis. The initial basis is then comprised of slack and dummy

variables, namely S, d , d 2 , d3 , S4 S5P d6 , d 7 .

(to  Co ) + S

(to0 - c o) 
+ (tI-C) "S I + d, 0

(t o - Co) + (t 2 - C 2) -S 2 + d2 =1

(t o - C) + (t1 -CI) + (t 2 - C2 ) -S3 + d3 =1 (29)

(t o - Co) + (t 3  C)+ S 4  I

(t - C O) + (t - C) + (t 3 - C 3 )+ S 5  =0

(t o - Co) + (t 2 - C2) + (t - C3)- S 6 + d = 1

(t o - Co)+ (t I - C I+ (t 2 - C 2 ) + (t 3 -C 3 )-S 7 + d 7 =0

The cost function is

Z = to + t1 + t2 + t3 + Co +C1 + C2 + C3 + Md1 + Md2 + Md3 + Md6 + Md7 (30)

Note that dummy variables are included in the cost function. The coefficients M

of the dummy variables are chosen very large to bias the problem so that, if possible,

the dummy variables will not be included in the basis which minimizes Z

In some Simplex applications the existence of a dummy variable in the final basiE
indicates there is no feasible solution. In our application this type of result siw yy
indicates that more than one core is required to mechanize the given function.
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Equation (30) is rearranged to canonical form by appropriate substitutions

from (29), eliminating the dummy variables.

Z = (1- 5M)t0 + (I - 3M)t 1 + (1 - 4M)t 2 + (I - 2M)t 3 + (I+ 5M)C0

+ (1+ 3M)C'1 + (1 + 4M)C 2 + (I + 2M)C 3 + MS 1 + MS 2 + MS 3 + MS 6 + MS 7  (31)

+ 5M

The problem is now ready to be treated in the manner previously described.

It will be recalled that if a function, h, is processed by Simplex, and dummy

variables appeared in the solution, then a multi-core configuration was required

to mechanize the function. Further, if one core were wound in accordance with

the t. and C. resulting, part of the function was obtained and a new function was

defined by placing a "one" in positions indicated by the subscripts of the dummy

variables in the solution. Let us refer to the portion of the function initially

mechanized as f, and the remaining portion as the residue function, g. Equation

(29) may be written as follows:

when h = 1 then . (t. - C.) - S. + d. -- 1

h .=- 0 then j (tj - C )+ S 0

Let F. = ZI (t.- C.), hence, when F i k 1, fi = 1, and F. : 0, f. = 0.

The symbol [] is defined as follows:

[x] = 1 if x a 1

[x] - 0 if x < 0
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The residue function is defined as follows:

kGi] = 1 when d. > 0 (32)

[G.- = 0 when d. = 0 or when there is no d. (33)

Equation (20) may now be written as

h. = [Fi] + [G,] (34)

To prove (34) all possible combinations will be examined; i. e.:

h. =11

tLF iJ = 0 (5

h. 0 0 Fi

1. h. = 1; FI= 1 i. e. F. k 1

1 . [F- 1 E ] -

Since Simplex guarantees that the original set of equations must be satisfied, we

may write

F.-S.+ d. = 1
1 1 1

But from (35) F. a 1 (36)
1

also Si k 0 (all variables are positive)
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Adding (36)

2F.+d. > 2 or F. Z 2 (37)1 1 2 (7

Hence where h. = 1 and F. > 1 the dummy variable must take the value of zero1 1

(all variables are positive) and we may say from (33) that [GJ = 0.

2. h. =1; iF. = 0 i.e. F i  0

F. - S. + d. = 1 (38)

-F. 01 1 1

S. 01

Adding (38)

d. 1 or d. > 0
1 1

Hence, where hi-- 1 and [Fi] = 0 dummy variables must remain. From (32)

LGi]= 1

3. h. = 0; [F.] = 1 i. e. F

F. + S. = ( 39)
1 1

In this case, (39) could be satisfied only if S. were negative, which is not permitted1

by Simplex. Hence, the condition (15) is not possible.

4. h.= 0; rFj = 0 i.e. F. 0
1 LJ1

In this case (39) is satisfied by a positive slack variable which, of course, is

permissible. However, since there is no di. we may say from (33), G = 0.

Therefore, equation (34) is satisfied under all possible combinations.
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The residue function defined above is now treated by Simplex. If it is a

one-core function, the problem is terminated, yielding a two-core function. If,

in processing the residue function, dummy variables remain in that solution,

then a new residue function is defined.

The above procedure is repeated until the final residue function processed

contains no dummy variables. Therefore, one magnetic core is required for

each function or residue function processed in the course of a problem. From

another point of view it may be said that the given function in a problem is re-

duced to a set of one-core functions, each of which might be represented by a

consistent set of inequalities. To obtain the original function, all of these one-

core functions are ORed together by the output line.

SIMPLEX MODIFICATIONS

In the course of the applications of the Simplex algorithm to the above

problem, several difficulties arose which resulted in some modifications. For

example, some solutions yielded minimum total number of turns at the expense

of additional cores. This, under the requirements of unlimited total number of

input turns, was not desirable. This type of answer, however, may be quite

useful and will be discussed under future work. An extreme example of this type

of difficulty is the result calling for zero turns and a residue function equal to

the original function. The type of Simplex algorithm finally developed is "dummy-

oriented;" i.e., in every applicable decision process during the course of the

problem, dummy variables are removed from the basis. The following modifi-

cations were introduced:
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1. Once a dummy leaves the basis it is not permitted to return. This is

accomplished by ignoring the relative cost factors of dummy variables in the

cost function.

2. The problem is not necessarily permitted to end when all of the relative

cost factors become positive. Instead, the initial conditions of the problem are

altered by changing the value of a relative cost factor assigned to one of the

dummy variables so that, at this stage of the problem, one of the non-dummy

variables assumes a negative relative cost factor. The test described previously

is applied to determine which variable, if any, will leave the basis. It is

possible that a variable with a negative relative cost factor cannot enter the basis

because the test for minimum positive value yields only negative numbers. It

should be noted that it is not difficult to change the initial conditions in the manner

described above because only the cost equation is affected throughuut the problem.

This procedure may be explained from the geometrical point of view. Con-

sider the cost function of (22). If the cost function were changed to Z = -2x 1 - 30x2,

then a different corner of the convex polygon would minimize the new cost function.

Summarizing, it may be stated that the relative cost factors are repeatedly

altered, forcing the problem to continue until a basis containing a minimum number

dummy variables is obtained.

At the price of a more "expensive" solution, i. e., one which might contain

more turns but uses less cores, the problem is permitted to terminate only when

it is impossible to remove dummy variables from the basis.

It is interesting to note that it is always possible to remove at least one

dummy from the initial basis. The partial result would be a function containing
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a single "one" and a residue function with one less bit than the original function.

All Boolean functions containing a single "one" are realizable with a single core.

But once a particular dummy leaves the basis, all dummy variables in rows

corresponding to ones which were consistent with the first dummy to leave the

basis will also leave the basis.

VARIABLE SUPPRESSION

A method referred to as "variable suppression" has been developed. This

method enables the synthesis of n-variable functions in terms of a known solution

of functions of less than n variables. The variable-suppression technique yields

solutions which may not be minimal, but this technique is one which is readily

automatized.

This technique is best described by example, For simplicity, a function

of four variables will be synthesized in terms of known solutions of functions of

two variables. Consider the function f = 1101001011001011. The truth table is

shown in figure 17. Note that the function f is divided into four subfunctions, a, b,

c, and d. The portions of each function lined out by arrows are zeros. It will

be observed that f. = a. + b. + c. + d.. Hence, the synthesis of the subfunction1 1 1 1 1

will provide a solution for f simply by connecting the output winding of the cores

associated with a, b, c, and d in series.

Consider function a. Bit positions i = 0 through i = 3 may be considered as

a function of two variables, namely II and 12' The solution for this function is

I + 11 - 12 (36)
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I4I)I3I, I f b C 4
i.-0 ( 0 0 0 I I

I 0 0 0 1 1 1

2 0 0 1 0 0 0

3 0 0 1 I I

4 0 1 00 0 0

5 0 1 0 1 0 0

60 0 I I

7 0111 I I

a 1 0 0 0 0 0

9 1 0 0 I I

10 1 0 1 0 0 0
II 1 0 I 1 0 0

12 1 0 0 I I

13 I I 0 I 0 0

14 I I I 0 I I
15 1 1 ; I

Figure 17 - Truth Table for f and the Sub Functions

But it is not sufficient to wind core "a" with this input configuration because it

represents a function of two variables which would repeat itself every four bit

positions. It is necessary to suppress any ones that might appear in the re-

maining portion of the function.

Note that the most positive value (36) can take is 2. If a winding of two turns

is provided for variable 13 and negatively connected, then the presence of the 13

current pulse, during bit positions i = 4 through i = 7, would cause zeros in these

positions. Similarly, a winding for 14 of two turns negatively connected would

cause zeros in bit positions i = 8 through i u 15. Hence, the m. m.f. equation

for "a" is

A X+ X 1 -X - Zx 3 - 2X 4
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where
a. = 1 when A. k 1

1 1

a. = 0 when A. : 0
1 1

The solution for bit positions i = 4 through i = 7 for function b is simply 12.

Bit positions i = 0 through i = 3 are held to zero by one turn negatively connected

for I 3'. The equivalent of 13 is I o- 13. Bit positions i = 8 through i a 15 are

held to zero by one turn negatively connected for variable X The m. m. f.

equation for b is

B X °  X2 + X3 - X4

Functions c and d are handled in the manner described above. Summarizing, the

set of m. m.f. equations for mechanizing f are

A X + X 1 - x 2 - 2X3 - 2X4

B = -X + X 2 + X 3 -X 4

C = -X + Xi - x - x 3 + x 4

D = -3X -x I + X2 + 2X 3 + 2X 4

The cores and the winding arrangement are shown in figure 18.

The Simplex algorithm previously described was programmed and operated

successfully on the Burroughs 220 Computer. This technique which will be

referred to as Simplex Mod I provided the capability of handling switching functions

of six variables. Computer storage capacity is the limiting factor with respect

to the number of variables which may be processed.
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OUTPUT: f
S S S S

XO a3

X2 DENOTES NUMBER

OF TURNS IF
X3 2 OTHER THAN ONE.

X4 2

RESETS • •

R R R R
a b C d

Figure 18 - Cores and Winding Arrangement for Mechanizing f

An improved version of Simplex (Simplex Mod II) has also been programmed

for the 220 which, in addition to reducing computation time, has the capability

of handling switching functions of nine variables. The modifications made to the

former method effect the tableau structure, the computational procedure, and

the cost function, and are described below.
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TABLEAU STRUCTURE

It will be recalled that the constraining equations are the m. m. f. inequalities

written for each row of the truth table. In order to provide for both clockwise

and counterclockwise turns, each N. is represented as the difference of two3

positives (t. - c.) which correspond to clockwise and counterclockwise turns

respectively. Consider the two-variable function f = 1001. The inequalities are:

(t -c) c 1

(t o -co) +(t I - c) <0
o o 1(37)

(t - c+ (t2 <c2  0

(to-c 0 + (t1 I 1 + (t2 - c2

where t. and c. are the unknowns.3 3

In forming an equation from an inequality containing the : sign, a slack

variable is added. For those inequalities containing the > sign a slack variable

is subtracted. At this point there is a deviation from Mod I in that a dummy

variable is not also added to the left side of the equation. Setting up the constraints

in this manner permits the S. of the equations with > signs to take on negative1

values. Now the initial solution is a basic solution, rather than a basic feasible

solution. Variables with negative values are permitted and given physical

interpretation.

Considering this it follows that the initial basis is comprised of slack variables

So, S V S2, S 3 with constraining equations of the following form:

-62-



(t -c) - S 1

(to - co) + (t1 - c1) + = 0(38)

(to- co) + (t - c2 + S2 0

(t -c + (tI  + (t c2  - S 3  1o Co) 1 1 2)2

In the Mod I a cost function is specified. In Mod II a cost function is selected

from one of the constraints which is of the form

S = EN. - 1 (38a)
1 J

Where the summation represents the total number of input turns (disregarding

polarity) in the magnetic core and the minus one is the initial value of the slack

variable, the quantity to be maximized. Only those slack variables with a value

of minus one are eligible to be selected as cost functions. Constraints which

are in contradiction will take on a value of - 2.

Consider the example f = 1001. The inequalities are

X 0 1 (39)o

X ° + X 1  < 0 (40)

X °  + X 2  < 0 (41)

X ° + X 1 + X 2  > 1 (42)

adding (39) and (42), (40) and (41), we get

2X + X +X 2  > 2
o 1 2 contradiction

2X + X 1 + X 2 0
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Adding the necessary slack variables to the inequalities we have:

X - S = 1 (43)o o

X + X1 + S1  = 0 (44)

X + + X 2  + S2 = 0 (45)

X + XI + X 2  - S3 = 1 (46)

Adding (43) and (46), (44) and (45-), we get

2X + X I + X 2 -S- S3 = 2 (47)

2X° + X 1 + X 2 + S 1 + S2 = 0 (48)

subtracting 42 from 41

S0 + S1 + S + S = -2 (49)

But S2 and S3 are initially positive quantities and are not permitted by the Simplex

Method to take on negative values. Removing S2 and S3 from (49) we get

S° + S3  s -2 (50)

If either constraints (43) or (46) is optimized making S or S3 > 0, the

burden of satisfying (50) is left to the other giving in each case S 0 -2 or0

S 3 -2, verifying that the form of the cost function must be as previously stated.

At first glance it might appear that in maximizing the value of S. we are being

forced to maximize EN. since this is the only variable term in the cost function.3

It is obvious that this is undesirable, and it can be shown that not only can S. be3

maximized without also maximizing ENj, but that the minimum value of ENj is

achieved. Before this is shown, however, it might be best to ex" lain why S.
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is being maximized and why the objective function takes the form of (38a).

It will be recalled that if a function, h, is processed by Simplex, and dummy

variables appeared in the solution, then a multi-core configuration was required to

mechanize the function. Further, if one core were wound in accordance with the

t. and c. resulting, part of the function was obtained and a new function was

defined by placing a "one" in positions indicated by the subscripts of the dummy

variables in the solution. In Mod II dummies are replaced by negative slack

variables. Refer to the portion of the function initially mechanized as f, and

the remaining portion as the residue function, g. The constraints may be

written as follows:

when h. = 1 then E(t.- cj) - S1 = 1 (51)

h. = 1 then E.(tj- c) + S 1 = 0 (52)

Let F. = E.(t. - c.) : hence when F. > 1, f. = 1 and when F. 0, f. = 0.

The symbol [ ] is defined as follows:

[X] = I if X I

Lx] = 0 if X 0

The residue function is defined as follows:

LG i  = 1 when S. < 0 (53)
LJ 1

fGi] = 0 when S. 2 0 or when there is no S, (54)

The function h is formed by

h = [Ft] + [Gi] (55)
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To prove (55) all possible combinations will be examined, i. e.,

h.= 1 LFi] = 1

[F] 0

h.=0 [F 1 ] 1

LFi] = 0

1. h. = 1; LFil = I i.e., F. 1 (56)

Since Simplex guarantees that the original set of equations must be satisfied,

we may write

F. - S. = 1 (57)1 1

But from (56) - F. <-1
1

Adding (57) - S. < 0 (58)1

Hence, where h. = 1 and F. 2 1, the slack variable must be 2 0 and from (54),1 1

[G 1 i o.

2. h. 1; Fil 0 i. e. ,.-F, 0

F. - S. = 1 (59)1 1

-F. 01

adding (59) -S. 1 or S. < 01 1

hence, where h. = I and LFi] = 0, negative slack variables must remain.

From (53), LGi] = 1.

3. h. = 0; iFi = 1 i.e., F. > 1

F. + S. = 0 (60)
1 1
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In this case, (60) could be satisfied only if S i were negative which is not permitted

by Simplex. Hence, the condition (39) is not possible.

4. h i = 0; [Fi] = 0 i.e., F i < 0

F. + S. =0 (61)1 1

-F. > 01

adding (6 1)

S. ; 0
1

This case is satisfied by a positive slack variable which of course is permissible.

Since S i is positive we may say from (54), [G.] = 0. Therefore, equation (55)

is satisfied under all possible combinations.

The residue function defined above is now treated by Simplex. If it is a one-

core function, the problem is terminated, yielding a two-core function. If, in

processing the residue function, negative slack variables remain in the solution,

then a new residue function is defined.

The above procedure is repeated until the final residue function processed

contains no negative slack variables. Therefore, one magnetic core is required

for each function or residue function processed in the course of the problem. From

another point of view, it may be said that the given function h is reduced to a set

of one-core functions, each of which can be represented by a consistent set of

inequalities. To obtain the original function, all of these one-core functions are

ORed together by the output line.

From the above discussion it becomes obvious that it is desirable to satisfy

Slack variables whose values are initially positive are not permitted to turn
negative.
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as much of the original function h as possible by successively maximizing as

many cost functions (negative slack variables) as possible. Looking once again

at the cost function

S. = EN. -1
1 J

it becomes apparent that if in the maximizing process S. is made zero, the corres-1

ponding h. is satisfied. Specifically solving the first equation of (38) for S 1 0 we

get

S 1  = (t o0 -  Co) + (t I1 - c I1)  -1

which is the form of the objective function. It will later be shown that the maximum
value that S. can take is zero.

1

Setting up equations (38) for computational procedure, the following tableau

is produced:

Ih NoIN N
0 1 2

So 0 -1 -1 0 0

S 0 1 i 0

S 0 1 0 1

S -. . ... .S3 .-i - I-

For purposes of tableau interpretation it is convenient to imagine the equations

re-written, so that all variables are on the left side and only the constants on the

right hand side. The rows refer to the basic variables and the columns to the
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non-basic variables. It is to be noticed that although care was taken in setting

up the constraint equations to allow for positive and negative solutions by repre-

senting the N. by the difference of two positive numbers (tj - c.), this need not

be carried into the tableau, but advantage can be taken of the fact that the co-

efficients of the t., cj pairs in the non-basis are always numerically equal--but

opposite in sign. Define N. = t. ; N. = c.. This definition plus the removal of the
3 3 31 3

dummy variables of Mod I results in a dramatic reduction in the tableau size

for Mod II. The tableau size for Mod I is given by Rows = 2 M and Col = 2(M=1) + K.

For Mod II given by Rows = 2 M and Col = M + 1, whereM is number of variables

and K is number of ones in the function. For example, a nine-variable problem

containing 200 ones in the function requires 112, 640 elements in the tableau

for Mod I and 5, 120 elements in the tableau for Mod 11.

COMPUTATIONAL PROCEDURE

To simplify the explanation, and to arrive at a clear understanding of the

modified Simplex process, a representation sample problem is examined to

demonstrate the computational procedure. For reasons of computational ease

and with no loss of generality a two-variable function with a multi-core solution

will be used; specifically, let us consider h = 1001. The constraining equations

are:

N -S = 1
0 0

N N +S = 0No 1

N O0 + N 2 + S 2 =0

N + N 1 + N -S = 1

where N* = (N. -N.)
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From here on only one of the N. - N. pair will be carried.

By inspection it is evident that a basic solution is given by

No 0 1 = 0 N2 = 0, So = -1, S1 = 0, S2 = 0, S 3 = -i .

The constraints for the basic variables are expressed in terms of the non-basic

variables and the initial tableau is set up as follows:

cost h No  IN1 N2
function(a)So °  - / ..... ... .. _--------

a o N0S -1 -1 0 0 pivot row

(b) S - -N 1  1 0

(C) S2 =-N -N2  (62) 1

(d) S3 N+ S -1 -N

Itpivot Col.

Thus far, no objective function has been determined, and before proceeding any

further one must be picked. Equation (62a) is chosen as the cost function because

it is of the form previously described. It can be noted that equation (62d) is also

of the proper form, but the first one encountered in scanning from top to bottom

is always picked.

In order that a row be picked as the cost row in the tableau representation

of the constraints it must contain:

(1) A slack variable in the cost column of that row.

(2) A minus one in the corresponding constant column element.

(3) A negative element which has a non-slack variable row element.
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At each step one of the non-basic variables is brought into the basis, for

which the entry in the cost function has a negative sign. In this specific problem

at this point N is to be made basic. The column headed by N will be the pivot

column.

It should be noted here that it is possible and quite probable that there will

exist more than one non-basic variable which would have these conditions. If

row (d) is picked as the cost row, both N and N2 would be eligible. When this

situation arises, the first variable encountered, going from left to right, is

chosen.

That variable, (or one of those in case of a tie) which has the smallest

positive ratio of the constant and the coefficient in the column thus chosen, must

be removed from the basis; only slack variables are taken into consideration

when determining the minimum ratio. This row is the pivot row. Again looking

at the tableau S 1 will leave the basis since row two has a ratio of zero.

Going back to the constraining equations let us justify all that has been said

thus far about the choice of variables for maximizing (62a). S can only beo

maximized by increasing N . If N is increased, the values of S 1, $2, and S3

will change. Care must be taken at this point not to make either SI or S 2 negative.

It must be understood that in this problem the slack variables which were added

to the inequalities are sign-restricted. Therefore they must remain zero or

assume positive values. Taking this into consideration, the largest value N0

may assume is zero. In the attempt to maximize So, no change is effected at

this time. This is due to degeneracy which is inherent in our problem.
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Since N was selected to replace S 1 in the basis, the new basis will consist0

of S0, No. $2, S3 . To begin the next phase, these variables are solved in terms

of the non-basic variables getting the new equations below. Using the rules for

tableau transformation, the new tableau is derived.

h S 1 N1 N2N2

(a) S = -N 1  - S 1  S -1 1 1 0

(b) N o = -N 1  - S1  N 0 1 1 00(63) 0

(c) S2 =+ N 1 -N 2 + S 1  S2 0 1 !-1 1
I-

(d) S 3 = +N 2 - S 1-1 S3 1 0 -1

Equation (63a.) no longer appears in a form suitable to pick as a cost function.

Correspondingly, the first row of the tableau fails to meet the requirements of a

cost row because it does not contain a negative element with a non-slack correspond-

ing variable row element. It must be remembered, however, that in order to

reduce the size of the tableau only one part of N. was chosen to appear and

recalling also that N. = -N.o Substituting -N 1 for N, . the following is true

Cost Sl N1 N2
Function

(a) So = -S1 -1 So - 1 -' 0

(b) No N1 -$1 N O  0 1 - 0

(c) S2 "N 1 -N2 +S (64) S2  0 - 4-2 Pivot Row1 2 12Piot2o

(d) S N -S -1 0 1-

32 Pivot Column
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Equation (64a) can again be selected as our cost function.

This time N1 will be brought into the basis and S2 removed. Again there can

be no increase in the cost function because the minimum ratio is zero.

Once more expressing the basic variables in terms of the non-basic variables

and transforming the tableau, we have:

h S S 2  N2

(a) SO  -N 2  -S 2  1 S -1 0 1

(b) N -N -S N 0 0 1 1
0 2 2 (65) o

(c) NI -N 2 +S1 -S 2  N 0 -I i

(d) S3 = N2 -S 1  -1 S3 ;-1 1 i-1

The first row of the tableau has again lost its identity as a cost row. This is

so because N2 has a negative coefficient or cost factor. As before, use is made

of the relationship N 2 = -N 2 and the necessary changes give:

h S1 . 2 .. 2 Pivot cal.

(a) So N S2 1 S -1 0 1 -1 ost function
0 2 2 0ivot row

(b) N =N 2  -S2  N 0 0 i -1(66) 0

(c) =N2 +S1 -S2 N 0 -1 1 -1

(d) S =-N -S -1 S3  -1 1 0 1
3 2 13

This time row one will be both cost row and pivot row since the minimum posi-

tive ratio occurs in this row. In this transformation, S leaves the basis and0

therefore assumes the value of zero.

-73-



J*

Previously, it was stated that in maximizing S. the EN. would assume the1 3

minimum value possible. It will be shown that the cost slack S. can never assume1

a value greater than zero. Therefore, EN. cannot increase by more than one3.

since S i must originally be equal to minus one.

First take the situation where the cost row becomes the pivot row. In

this case, the cost slack will leave the basis and have a value of zero.

In the only other situation, the cost row is not also the pivot row. In this

case if the cost is to change, then the constant column element of the pivot row

must be non-zero. From (67) it is seen that in order for V. to be picked as the1

pivot row

K K

- - where K., E., Kc , E are positive numbers.
E. E 1 c

1 c

From the transformation rules, the New Cost (K c ) is received.

Where

new K = -old K (Ec K1
c c E.

1

E K.
= -old K + cE.

1

E - K.
but old Kc < c E.1 keeping the cost negative.

1

Concluding, it is evident that the cost must remain negative unless the

cost row is picked as the pivot row, in which case the cost goes to zero.
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S -K -E cost row

C C 1  C

(67)

V. K. E. pivot row
1 1 1

Vari.
Col.

Con.
Col.

Returning to the computation and taking the next step--once again the

equations are put into canonical form with respect to N2 which was chosen to

enter the basis, and the tableau is transformed giving:

hI S1

(a) N = S +S +1 1 0 1-1 1

(b) N S +1 N 1 0 1 0 '-i
0 00

(c) I = S +SI +1 N 1 -1 0 -1
0:

(d) S 3 =-S -S 1 - 2 -2 Sq -2 1 1 1

Looking at the equations and tableau, it is obvious that a new cost function

can't be picked. Observing also that S 3 with a value -2 remains, which indicates

a multi-core solution with the first core satisfying only the fi, st three states of

the truth function, leaving a residue function g, = 0001
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The solution for the first core:

N =1
0

N1= (69)

N2=

DON'T- CARE CONDITION

The "don't care" condition is readily handled by the Simplex algorithm. This

is accomplished by removing the constraints which involve input conditions which

never occur or are of no consequence. In many cases tested, this results in a

marked reduction in hardware. Further, since a given function is mechanized

by OR-ing together one-core functions, a "don't care" list may be generated for

any problem. This is accomplished by using the poEitions of the "ones" in the

sub-function, K. as the "don't care" conditions in sub-function, K + 1, and the

positions of the ones in sub-functions K and K + 1 and "don't cares" for sub-

function K + 2, etc. This procedure also in many cases resulted in a reduction

of hardware. For example, a nine-variable function processed in the design of

the decimal adder was reduced from a 24-core to a 16-core design.
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SECTION III

CONCLUSIONS

The study program, magnetic logical transducers, is concerned with the

problem of achieving designs for single stage, combinatorial embodiments of

arbitrary switching functions of n variables by means of magnetic phenomena.

Because of their inherent simplicity and reliability, and because the types of

functions which they can embody do not depend upon physical structure as in

the case of multipath magnetic devices, the study is confined to square-loop

magnetic toroids; the required versatility in function embodiment is attained

by applying the, at first, rather nebulous concept of threshold device logic.

The study necessarily divided itself into two complementary phases, the

first concerned with an immediate solution to the design problem and the second

with a theoretical study of threshold devices having linear summing input

circuits. The result of the first phase is an algorithm in the form of a com-

puter program written for the Burroughs 220 computer. Functions of as

many as nine variables are routinely designed in a form which is approximately

minimal, at least in core count, by the use of this algorithm. The result of

the second phase is a greater understanding of the operation of the input circuit

of a threshold device, logic element, and a new tool, the function profile, which

makes possible the design of functions of any number of variables, limited only

by the amount of labor involved. Furthermore, an approach to the formulation

of a logic of functions realizable in a single threshold element is made possible
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by the discovery of minimum sets of circuits which map all realizable functions

of a given number of variables and of automatic, means for describing all re-

quired function transformations. The concept of function modification by

profile shifting appears to have application to the field of Bionics.
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SECTION IV

RECOMMENDATIONS

It is recommended that study continue in the areas described below.

THEORETICAL STUDIES

The Profile Technique is a powerful tool which is used to study the input

composite of a magnetic core or other threshold devices. The areas of interest

include (a) the formulation of a realizability test algorithm which is necessary

and sufficient for any number of variables, (b) proof of all theorems used in

the partitioning algorithm, (c) the development of an algorithm for reducing an

arbitrary solution to minimality, (d) study of sets of building blocks based on

profile shifting.

SIMPLEX

Minimalit,

Though satisfactory designs are achieved by Simplex, they are not, in

general, minimal, where minimal is defined as the smallest number of threshold

elements required to mechanize a given function. The difficulty is that the

manner in which a switching function may be partitioned into threshold functions

is not unique. It has been demonstrated that the threshold functions selected to

form the specified switching function in many cases depends on the starting point

chosen in a given problem. It has also been demonstrated that a reduced thres-

hold element count can result by introducing an increasing "don't care" list to

each problem, i. e. the bit positions of partition k become the "don't care"
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conditions for partition k+ 1. This ib permissable because the partitioned

functions are inclusively ORed. This procedure is equivalent to mapping the

required function by sets which are permitted to overlap. However', to produce

minimal solutions requires the development of criteria which lead to a minimal

number of sets to map the function. Preliminary thinking indicates that the

realizability tests based on the Hamming distance between bits may provide a

good starting point for such an analysis. Study is proposed in this area.

Input Limitations

From an engineering point of view, based on tolerance requirements, an

upper limit may be placed upon the total input weights and the threshold value.

The nature of the Simplex algorithm is such that these additional constraints may

be introduced into the existing program. This is possible since in forming a

partition the input solution is available for each intermediate step. A solution

may be chosen which contains the maximum number of bits and which is still

within the given threshold value and total input weight specification. Though the

overall element count may be increased, feasible circuits are designed. It is

proposed that the above feature be considered for future study.

Experimental Studies

Any foreseeable system using magnetic threshold logic is likely to be com-

posed of multi-level nets. For this reason, it is necessary to study the terminal

properties of a magnetic core with various kinds of loads to develop systems with

fan-in and fan-out capabilities. Newer magnetic materials with smaller H and/orc

sharper thresholds may provide break-through.

Chao, J. C., On Driver Tolerances for Linear Input Logic with Magnetic Cores,
Burroughs Corp. internal publication, RM 61-25 (in preparation).
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GLOSSARY

Hi  The applied magnetic field, or magnetizing force. Hi = NI/ in

M. K.S. unit.

H The unit of applied magnetic field. H. = M H where M take positive0 1 o

and negative integer values and zero. H > Hc , the coercive force,

and depends on the desired speed of switching.

I The amplitude of the applied constant current pulse taken so that for

N= 1, NI/.t = I/i, = H .0

C A matrix operator which applied to the solution vector transforms

it in accordance with a given set of symmetry operations on the inputs.

P A permutation matrix which transforms a function in accordance with

a set of symmetry operations on the inputs to the switching circuit

generating the function.

Tt The transpose of T, the truth table with an added column of "ones"

considered as a matrix.

S A column vector representing the solution, or design, of a switching

circuit. The terms q, Ni p 0 ! i ! n are the input values (weights) of

the drivers, x..

FA' GA' The partitions of a function, A, which is not realizable in a single

etc.
core.
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x. The input variables for 1 : i e n. For n = 0, x represents the bias1 0

which is always present.

For 0 r ! an - 1, the truth value of the rth state of the truth
r

function.

M The number of units of H for the rth state of the function. M is the
r o r

sum of the input values (weights) of the drivers which are "on" in the

rth state.

6 A number which arises in testing whether a hypothetical profile is
S

consistent. If 6S > 2, the profile is not consistent.

-92-


